Mouser Left Banner
Mouser Left Banner
Mouser Left Banner
Mouser Right Banner
Mouser Right Banner
Mouser Right Banner
More

    Evaluating the ability of gallium oxide as an ultrawide bandgap semiconductor

    In microelectronic devices, the bandgap is a major factor determining the electrical conductivity of the underlying materials, and a more recent class of semiconductors with ultrawide bandgaps are capable of operating at much higher temperatures and powers than conventional small-bandgap silicon-based chips. Researchers now provide a detailed perspective on the properties, capabilities, current limitations and future developments for one of the most promising UWB compounds, gallium oxide.

    In microelectronic devices, the bandgap is a major factor determining the electrical conductivity of the underlying materials. Substances with large bandgaps are generally insulators that do not conduct electricity well, and those with smaller bandgaps are semiconductors. A more recent class of semiconductors with ultrawide bandgaps (UWB) are capable of operating at much higher temperatures and powers than conventional small-bandgap silicon-based chips made with mature bandgap materials like silicon carbide (SiC) and gallium nitride (GaN).

    Researchers at the University of Florida, the U.S. Naval Research Laboratory and Korea University provide a detailed perspective on the properties, capabilities, current limitations and future developments for one of the most promising UWB compounds, gallium oxide (Ga2O3).

    Gallium oxide possesses an extremely wide bandgap of 4.8 electron volts (eV) that dwarfs silicon’s 1.1 eV and exceeds the 3.3 eV exhibited by SiC and GaN. The difference gives Ga2O3 the ability to withstand a larger electric field than silicon, SiC and GaN can without breaking down. Furthermore, Ga2O3 handles the same amount of voltage over a shorter distance. This makes it invaluable for producing smaller, more efficient high-power transistors.

    “Gallium oxide offers semiconductor manufacturers a highly applicable substrate for microelectronic devices,” said Stephen Pearton, professor of materials science and engineering at the University of Florida and an author on the paper. “The compound appears ideal for use in power distribution systems that charge electric cars or converters that move electricity into the power grid from alternative energy sources such as wind turbines.”

    Pearton and his colleagues also looked at the potential for Ga2O3as a base for metal-oxide-semiconductor field-effect transistors, better known as MOSFETs. “Traditionally, these tiny electronic switches are made from silicon for use in laptops, smart phones and other electronics,” Pearton said. “For systems like electric car charging stations, we need MOSFETs that can operate at higher power levels than silicon-based devices and that’s where gallium oxide might be the solution.”

     

    ELE Times Research Desk
    ELE Times Research Deskhttps://www.eletimes.com
    ELE Times provides a comprehensive global coverage of Electronics, Technology and the Market. In addition to providing in depth articles, ELE Times attracts the industry’s largest, qualified and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build awareness, drive traffic, communicate your offerings to right audience, generate leads and sell your products better.

    Technology Articles

    Popular Posts

    Latest News

    Must Read

    ELE Times Top 10