Mouser Left Banner
Mouser Left Banner
Mouser Left Banner
Mouser Right Banner
Mouser Right Banner
Mouser Right Banner
More

    The world’s first circuit integrating multiple-bit non-volatile memory technology introduced

    Researchers at CEA-Leti and Stanford University have developed the world’s first circuit integrating multiple-bit non-volatile memory (NVM) technology called Resistive RAM (RRAM) with silicon computing units, as well as new memory resiliency features that provide 2.3-times the capacity of existing RRAM. Target applications include energy-efficient, smart-sensor nodes to support artificial intelligence on the Internet of Things, or “edge AI”.

    The proof-of-concept chip has been validated for a wide variety of applications (machine learning, control, security). Designed by a Stanford team led by Professors Subhasish Mitra and H.-S. Philip Wong and realized in CEA-Leti’s cleanroom in Grenoble, France, the chip monolithically integrates two heterogeneous technologies: 18 kilobytes (KB) of on-chip RRAM on top of commercial 130nm silicon CMOS with a 16-bit general-purpose microcontroller core with 8KB of SRAM.

    The new chip delivers 10-times better energy efficiency (at similar speed) versus standard embedded FLASH, thanks to its low operation energy, as well as ultra-fast and energy-efficient transitions from on mode to off mode and vice versa. To save energy, smart-sensor nodes must turn themselves off. Non-volatility, which enables memories to retain data when power is off, is thus becoming an essential on-chip memory characteristic for edge nodes. The design of 2.3 bits/cell RRAM enables higher memory density (NVM dense integration) yielding better application results: 2.3x better neural network inference accuracy, for example, compared to a 1-bit/cell equivalent memory.

    “The Stanford/CEA-Leti team demonstrated a complete chip that stores multiple bits per on-chip RRAM cell. Stored information is correctly processed when compared with previous demonstrations using standalone RRAM or a few cells in a RAM array,” said Thomas Ernst, Leti’s chief scientist for silicon components and technologies. “This multi-bit storage improves the accuracy of neural network inference, a vital component of AI.”

    Mitra said the chip demonstrates several industry firsts for RRAM technology. These include new algorithms that achieve multiple bits-per-cell RRAM at the full memory level, new techniques that exploit RRAM features as well as application characteristics to demonstrate the effectiveness of multiple bits-per-cell RRAM at the computing system level, and new resilience techniques that achieve a useful lifetime for RRAM-based computing systems.

    “This is only possible with a unique team with end-to-end expertise across technology, circuits, architecture, and applications,” he said. “The Stanford SystemX Alliance and the Carnot Chair of Excellence in NanoSystems at CEA-Leti enabled such a unique collaboration.”

    For more information, visit: www.leti-cea.com

    ELE Times Research Desk
    ELE Times Research Deskhttps://www.eletimes.com
    ELE Times provides a comprehensive global coverage of Electronics, Technology and the Market. In addition to providing in depth articles, ELE Times attracts the industry’s largest, qualified and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build awareness, drive traffic, communicate your offerings to right audience, generate leads and sell your products better.

    Technology Articles

    Popular Posts

    Latest News

    Must Read

    ELE Times Top 10