Induction of Artificial Magnetic Texture in Graphene

Graphene is incredibly strong, lightweight, conductive the list of its superlative properties goes on. It is not, however, magnetic—a shortcoming that has stunted its usefulness in spintronics, an emerging field that scientists say could eventually rewrite the rules of electronics, leading to more powerful semiconductors, computers, and other devices.

Independent of each other, graphene and spintronics each possess the incredible potential to fundamentally change many aspects of business and society. But if you can blend the two together, the synergistic effects are likely to be something this world hasn’t yet seen,” says lead author Nargess Arabchigavkani, who performed the research as a Ph.D. candidate at UB and is now a postdoctoral research associate at SUNY Polytechnic Institute.

Additional authors represent UB, King Mongkut’s Institute of Technology Ladkrabang in Thailand, Chiba University in Japan, University of Science and Technology of China, University of Nebraska Omaha, University of Nebraska Lincoln, and Uppsala University in Sweden.

The electrodes revealed a surprise—the magnet induced an artificial magnetic texture in the graphene that persisted even in areas of the graphene away from the magnet. Put simply, the intimate contact between the two objects caused the normally nonmagnetic carbon to behave differently, exhibiting magnetic properties similar to common magnetic materials like iron or cobalt.

Rather than utilizing the electrical charge carried by electrons (as in traditional electronics), spintronic devices seek to exploit the unique quantum property of electrons known as spin (which is analogous to the earth spinning on its own axis). Spin offers the potential to pack more data into smaller devices, thereby increasing the power of semiconductors, quantum computers, mass storage devices, and other digital electronics.