Digital Isolators with Superior Radiation Performance released for Small Satellites in Low Earth Orbit

Renesas Electronics Corporation, a premier supplier of advanced semiconductor solutions, introduced two plastic packaged, radiation-tolerant digital isolators that provide the highest isolation protection (2,500V) from high voltage spikes in power supply stages and serial communications interfaces used in low Earth orbit (LEO) Small Satellites (SmallSats).

Private “New Space” companies plan to launch thousands of SmallSats forming large constellations that operate in multiple LEO planes. SmallSat mega-constellations provide ubiquitous broadband Internet of Things (IoT) communications anywhere across the globe, and Earth observation high-resolution imaging for sea, air, and land asset tracking.

The passive input ISL71610M and active input ISL71710M offer superior performance across key electrical specifications, including isolation voltage, data rate, common mode transient immunity, propagation delay, quiescent current, and dynamic current. Renesas’ Giant Magneto Resistive (GMR) digital isolators are ideal replacements for optocouplers that are susceptible to cloudy optics from total ionizing dose (TID) radiation.

“The ISL71610M and ISL71710M use a GMR inductive structure that is inherently immune to radiation effects, and build on Renesas’ six decades of spaceflight experience,” said Philip Chesley, Vice President, Industrial Analog and Power Business Division, Renesas Electronics Corporation. “GMR makes our space-grade digital isolators more desirable than optical-based designs, and Renesas’ radiation-tolerant plastic flow provides the optimal cost versus radiation performance in comparison to Class V isolators.”

Key Features of ISL71610M and ISL71710M:

  • Supply range of 3V to 5.5V
  • Isolation voltage of 2.5kVRMSfor 1 minute, and 600VRMS continuous
  • Data rates up to 100Mbps (ISL71610M), and 150Mbps (ISL71710M)
  • Common mode transient immunity of 20kV/µs (ISL71610M), and 50kV/µs (ISL71710M)
  • Propagation delay of 8ns (ISL71610M), and 10ns (ISL71710M)
  • Quiescent current of 1.3mA (ISL71610M), and 1.8mA (ISL71710M)
  • Full military temperature range operation
    • TA= -55°C to +125°C
    • TJ= -55°C to +150°C
  • Radiation characterization at Low Dose Rate (LDR) (0.01rad(Si)/s): 30krad(Si)
  • SEE characterization: No SEB/SEL, VDD= 7V; LET = 43MeV•cm2/mg

Isolated 100V Half-Bridge Power Supply Reference Design

The ISL71610M passive input digital isolator is used in Renesas’ radiation-hardened half-bridge power stage reference design. The reference design’s ISL73040SEH4Z evaluation board demonstrates a half-bridge power stage design capable of taking 100V input from a satellite’s solar panels and generating step-down power rail voltages–28V, 12V, 5V, and 3.3V–with a power efficiency of up to 94 percent.

The ISL73040SEHEV4Z User Manual describes how to build a half bridge power stage with isolation using the ISL71610M, ISL73040SEH low side GaN driver and the ISL73024SEH 200V GaN FET. The user manual provides the bill of materials (BOM), and explains how to power the isolator and achieve dead-time control, and it includes layout guidelines to minimize overshoot and ringing on the GaN FET gate.

Isolated CAN Bus Application:

The ISL71710M can be used with a single-ended CAN Bus input signal to provide fault tolerant serial communications isolation between the CAN Bus controller and ISL71026M rad-tolerant CAN Bus transceiver, or the ISL72026SEH rad-hard CAN Bus transceiver. This application can be extended to RS-422 by using the ISL71710 with the HS-26C31 rad-hard RS-422 transmitter and HS-26C32 rad-hard RS-422 receiver.

For more information, visit: renesas.com

LEAVE A REPLY