Mouser Left Banner
Mouser Left Banner
Mouser Left Banner
Mouser Right Banner
Mouser Right Banner
Mouser Right Banner
More

    Magnetoresistance ratio opens door to enhance highly sensitive magnetic field sensors

    Magnetic field sensors can enhance applications that require efficient electric energy management. Improving magnetic field sensors below the picoTesla range could enable a technique to measure brain activity at room temperature with millisecond resolution, called magnetic encephalography, without superconducting quantum interference device (SQUID) technology, which requires cryogenic temperatures to work.

    A group of researchers from Japan’s National Institute of Materials Science at the University of Tsukuba and LG Japan Lab Inc. explored enhancing the magnetoresistance ratio in a current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) device by using a half-metallic Heusler CoFeAl0.5Si0.5 (CFAS) alloy. The alloy has 100 percent spin-polarized conduction electrons, which enables very high spin-asymmetry of electron scattering and results in a large magnetoresistance ratio.

    Magnetoresistance, a variation of electrical resistance in response to an externally applied magnetic field, is important for all magnetic field sensor applications. To increase the sensitivity of magnetic field sensors, their magnetoresistance ratio (a value defined as electrical resistance change against magnetic field or magnetization) must first be increased.

    “We were able to demonstrate further enhancement of the magnetoresistance ratio by making multilayer stacks of CFAS and silver (Ag),” said Yuya Sakuraba, leader of the Magnet Materials Group at NIMS. “By precisely controlling the interfacial roughness of the multilayers, we obtained antiparallel interlayer exchange coupling between each of the CFAS layers, up to six, and achieved not only a high magnetoresistance ratio but also high linearity of resistance change against the magnetic field.”

    The researchers fabricated a fully expitaxial device on a single crystalline magnesium oxide (MgO) substrate. If a similar property can be obtained in a polycrystalline device, it may become a candidate for a new magnetic field sensor with a greater sensitivity than a conventional Hall sensor or tunnel magnetoresistance sensor.

    ELE Times Research Desk
    ELE Times Research Deskhttps://www.eletimes.com
    ELE Times provides a comprehensive global coverage of Electronics, Technology and the Market. In addition to providing in depth articles, ELE Times attracts the industry’s largest, qualified and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build awareness, drive traffic, communicate your offerings to right audience, generate leads and sell your products better.

    Technology Articles

    Popular Posts

    Latest News

    Must Read

    ELE Times Top 10